INTERSECTION EVALUATION STUDY

Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576)
Hernando County

Prepared for:

HERNANDO COUNTY DEPARTMENT OF PUBLIC WORKS

1525 E. Jefferson St.
Brooksville, FL 34601

Contract for Traffic Operations
Burgess \& Niple Contract No.: \# 18-R00006/PH
Task Work Order: \#16
Continuing Traffic Engineering Services

Prepared by:
Burgess \& Niple, Inc.
1511 N Westshore Blvd, Suite 500
Tampa, FL 33607
June 2023

SIGNATURE PAGE

PROFESSIONAL ENGINEER'S SEAL

Burgess \& Niple, Inc.
1511 N Westshore Blvd, Suite 500
Tampa, Florida 33607
813.962.8689

Engineer in Responsible Charge: Daniel Hendrickson, P.E.

Professional Registration No.: 76184

SIGN / DATE / SEAL

1.0 INTRODUCTION

Hernando County Department of Public Works has retained Burgess \& Niple (B\&N) to conduct a Intersection Traffic Analysis at the intersection of Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576) in Hernando County, Florida. As a follow up study of the Traffic Signal Warrant Analysis conducted by B\&N in 2020 (included in Appendix A), this study compares and evaluates the alternatives of traffic signal and roundabout, respectively, for the study intersection. The study has been conducted in accordance with the guidelines and procedures outlined in the FDOT Manual on Uniform Traffic Studies (MUTS), FDOT Design Manual (FDM) and the Manual on Uniform Traffic Control Devices (MUTCD).

Figure 1-1: Project Location Map

2.0 EXISTING CONDITION

The intersection of Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576) is located in Hernando County, Florida. Table 2-1 below summarizes the existing conditions at this intersection. Figures 2-1 shows the intersection aerial. Condition Diagram and approach photographs were included in Appendix A.

Table 2-1: Summary of Existing Conditions

Feature	Description	
Major Street	Culbreath Road (CR 581)	Ay
Minor Street	Ayers/Hayman Road (CR 576)	Ayers/Hayman Road - 55 MPH
Posted Speed Limits	Culbreath Road - 45 MPH	Culbreath Road - Uncontrolled with yellow flashing warning beacon
Traffic Control	Ayers/Hayman Road - STOP control supplemented with red flashing beacons	

Figure 2-1: Intersection Aerial

3.0 TRAFFIC VOLUMES

Volume data and turning movement count (TMC) were collected in the previous study. The intersection TMC indicated a morning peak hour of 7:00 to 8:00 AM and afternoon peak hour of 5:00 to 6:00 PM. It also noted that the heaviest turning movements are the eastbound right turn in the AM peak and the northbound left turn in the PM peak. Detailed count information is included in Appendix A. Future volumes, including Opening Year (2025) and Design Year (2035), were calculated to evaluate the performance of traffic signal and roundabout, respectively. The growth rate of 3% for all approaches was estimated based on collected volume data and historical AADT from Florida Traffic Online. The projected morning and afternoon peak hour traffic volumes are graphically shown in Figure 3-1 and Figure 3-2 for Opening Year and Design Year, respectively. The Historical AADT reports are included in Appendix B.

Figure 3-1 Opening Year (2025) Peak Hour TMC

Figure 3-2 Design Year (2035) Peak Hour TMC

4.0 COLLISION DATA

Crash data for the 3-year period (January 1, 2016 to December 31, 2018) was obtained from the University of Florida's Signal 4 Analytics. A total of 22 crashes were reported within 3 years. Detailed crash analysis and the collision diagram can be found in the previous study in Appendix A.

5.0 ALTERNATIVE ANALYSIS

The following alternatives were evaluated as part of this analysis. Concepts can be found for each alternative in Figure 5-1 \& 5-2 on the following pages.

- No Build: Stop controlled intersection with stop signs on the eastbound/westbound approaches.
- Alternative 1: Install traffic signal and add one dedicated left turn lane for all approaches.
- Alternative 2: Construct a one-lane roundabout.

5.1 OPERATIONAL IMPACTS

The anticipated opening year for traffic signal and roundabout is 2025, and anticipated design year is 2035. Synchro 11 software and SIDRA 11 were used to analyze operational impacts of all alternatives. Traffic signal plan was optimized via Synchro and HCM $6^{\text {th }}$ Edition model was used for delay and LOS calculation. The operational analysis results were summarized in Table 5-1 for Opening Year (2025) and Future Design Year (2035) traffic volumes using the AM and PM peak hours of $7-8$ AM and 5-6 PM, respectively.

Table 5-1: Summary of Operational Analysis

Scenarios	Approach	AM						PM					
		No Build		Alternative 1		Alternative 2		No Build		Alternative 1		Alternative 2	
		Delay	LOS										
$\begin{aligned} & \text { Opening- } \\ & 2025 \end{aligned}$	EB	28	D	5	A	9	A	NA*	F	19	B	5	A
	WB	28	D	10	A	4	A	NA*	F	28	C	9	A
	NB	5	A	13	B	5	A	7	A	12	B	14	B
	SB	0	A	11	B	5	A	1	A	32	C	8	A
	Overall	19	C	8	A	7	A	NA*	F	16	B	11	B
$\begin{gathered} \text { Design - } \\ 2035 \end{gathered}$	EB	112	F	9	A	14	B	NA*	F	31	C	6	A
	WB	156	F	10	B	5	A	NA*	F	31	C	14	B
	NB	6	A	18	B	6	A	8	A	20	B	30	D
	SB	0	A	14	B	6	A	0	A	38	D	11	B
	Overall	74	F	12	B	10	B	NA*	F	24	C	22	C

[^0]The No Build Alternative eastbound and westbound traffic will experience extreme delay (beyond modeled capacity in Synchro) during PM peak hour for both Opening Year (2025) and Design Year (2035) due to the northbound high left turn volumes. The Opening Year (2025) overall delay is 19 second/vehicle (sec/veh) during the AM peak for No Build Alternative, which is expected to worsen to $74 \mathrm{sec} / \mathrm{veh}$ in 2035. Installing a traffic signal and providing dedicated left turn lane for all approaches (Alternative 2) reduces the overall delay and provides acceptable LOS for all scenarios. Compared to the No Build Alternative, the Alternative 2 of roundabout also reduces overall delay for all scenarios and provide the best LOS among the 3 analyzed alternatives. Additional operational information is included in reports in Appendix C. Based on Table 5-1, constructing a roundabout shows the greatest reduction in delay for this intersection.

5.2 QUEUE LENGTH ANALYSIS

A turn lane queue length analysis was performed for Alternative 1, utilizing the Design Year (2035) traffic volumes. The total required storage for turn lanes is calculated by summing the max queue and the deceleration length. Max queue lengths (Q) were provided by Synchro 11 and deceleration distances were used from FDOT FDM Section 212. For the approaches with low left turning volume and small calculated queue length, the minimum 100 ft queue length is applied as a conservative assumption to accommodate the high truck volume. The shared thru/right turn queue was also shown to determine whether the left turn lane will be impacted. The results of this analysis are shown below in Table 5-2. Additional design analysis will be performed following receipt of design survey to determine the feasibility and impacts of providing left turn lanes. Detailed queue length information is included in reports in Appendix C.

Table 5-2: Summary of Queue Length Analysis

Lane	NBL	NBT/R	SBL	SBT/R	EBL	EBT/R	WBL	WBT/R
Decel. Distance (L)								
Max Queue Length (Q)	$\mathbf{2}$	185		575	100	100		350
	125	100	250	350				
Req'd Storage (Q+L')	760	100	285	125	450	250	450	100

Note: ${ }^{1}$ FDOT FDM Exhibit 212-1, 45 MPH Design Speed; L=185', 55 MPH Design Speed; L=350'; ${ }^{2}$ Synchro 11, 95th Percentile Calculated Queue Length, Max AM/PM

5.3 BENEFIT COST ANALYSIS

A Benefit Cost Analysis was performed for the 2 proposed alternatives. Based on the USDOT B/C Analysis Guidance for Discretionary Grant Programs (2023), benefits of proposed alternatives comparing to No Build are claimed via delay reduction and safety improvement. Detailed assumptions and data sources are included in Appendix D.

The benefit from reducing delays were calculated by comparing 2025 and 2035 calculated delay (as shown previously in Table 5-1) among alternatives. Daily delay benefits were only derived from AM and PM peak hours per day as a conservative benefit estimate. The Historical Crash Method was used to claim the safety benefits for each alternative. The following Crash Modification Factors (CMFs) were utilized and have been summarized in Table 5-3.

Table 5-3 Crash Modification Factor Summary

CMF ID	Description	Quality Rating	CMF	Crash Type	Crash Severity	Time of Day	Area Type
325	Conversion of Stop-Controlled Intersection to Signalized Control	5 stars	0.56	All	All	All	Rural
7867	Conversion of Stop-Controlled Intersection to Roundabout	3 stars	0.38	All	All	All	Not Specified

Construction costs for the 2 proposed alternatives were estimated and summarized in Table 5-4. Detailed engineer's Estimates for construction cost are included in Appendix D. Impacts of proposed alternatives on right-of-way (ROW) are illustrated in the Concept Plan (Figure 5-1 and 5-2), respectively. At this time, ROW acquisition costs are unknown, only construction costs are included in the analysis.

Table 5-4 Cost Estimates

Alternative	Construction Cost
Alternative 2: Traffic Signal	$\$ 2,114,467$
Alternative 3: Roundabout	$\$ 2,057,769$

The results of the Benefit Cost Analysis were summarized in Table 5-5 and supporting calculations and assumptions are included in Appendix D. Based on this analysis, Alternative 3 of roundabout is preferred for this intersection.

Table 5-5 Benefit Cost Analysis Result Summary

Alternative	Benefits		Costs	Results	
	Delay Reduction	Safety		Net Present Value	Benefit/Cost Ratio
Alternative 2: Traffic Signal	$\$ 689,141$	$\$ 4,466,244$	$\$ 2,114,467$	$\$ 3,169,778$	2.6
Alternative 3: Roundabout	$\$ 798,736$	$\$ 6,293,344$	$\$ 2,057,769$	$\$ 5,189,557$	3.7

6.0 RECOMMENDATIONS

Based on the results of the alternative analysis, field observations, and engineering judgment, the following conclusions and recommendations were developed:

- With a Benefit/Cost ratio of 3.7 and net present value of $\$ 5,2$ million dollars, Alternative 2 of roundabout is recommended. However, the final decision should consider the costs of ROW acquisition for the proposed alternatives.

APPENDIX A

Traffic Signal Warrant Analysis Report

TRAFFIC SIGNAL WARRANT ANALYSIS

Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576)
Hernando County

Prepared for:

HERNANDO COUNTY DEPARTMENT OF PUBLIC WORKS

1525 E. Jefferson St.
Brooksville, FL 34601

Contract for Traffic Operations
Burgess \& Niple Contract No.: \# 18-R00006
Task Work Order: \#1
Continuing Traffic Engineering Services

Prepared by:
Burgess \& Niple, Inc.
10006 N. Dale Mabry Hwy, Suite 201
Tampa, FL 33618
June 2020

1.0 INTRODUCTION

Hernando County Department of Public Works has retained Burgess \& Niple to conduct a Traffic Signal Warrant Analaysis at the intersection of Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576) in Hernando County, Florida. The intersection is in a rural area of Hernando County. This intersection is a connector eastbound to US 41 by way of Ayers/Hayman Road and to northbound to Brooksville by way of Culbreath Road. The study has been conducted in accordance with the guidelines and procedures outlined in the FDOT Manual on Uniform Traffic Studies (MUTS) and the Manual on Uniform Traffic Control Devices (MUTCD).

Figure 1-1: Project Location Map

2.0 EXISTING CONDITIONS

The intersection of Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576) is located in Hernando County, Florida. Table 2-1 below summarizes the existing conditions at this intersection. Figures 2-1 and 2-2 show the intersection aerial and Condition Diagram, respectively. Approach photographs are included in Appendix A.

Table 2-1: Summary of Existing Conditions

Feature	Description	
Major Street	Culbreath Road (CR 581)	Ayers/Hayman Road - 55 MPH
Minor Street	Ayers/Hayman Road (CR 576)	A
Posted Speed Limits	Culbreath Road - 45 MPH	Culbreath Road - Uncontrolled with yellow flashing warning beacon
Traffic Control	Ayers/Hayman Road - STOP control	
supplemented with red flashing beacons		

Figure 2-1: Intersection Aerial

3.0 TRAFFIC VOLUMES

A 24-hour approach count was conducted at the intersection of CR 581 (Culbreath Road) and CR 576 (Ayers/Hayman Road) to determine the 8 peak hours for the turning movement count (TMC). The TMC was conducted on Thursday, February 27, 2020 for the hours of 6:00 to 9:00 AM and 2:00 to 7:00 PM. The 24 -hour approach and TMC summaries are shown in Table 3-1 and Table 3-2, respectively. There were no observed pedestrians or bicyclists during the study period. Detailed count information is included in Appendix B.

Table 3-1: Summary of 24-Hour Approach Counts

TIME	NB	SB	$\begin{gathered} \text { N/S } \\ \text { TOTAL } \end{gathered}$	EB	WB	$\begin{gathered} \text { E/W } \\ \text { TOTAL } \end{gathered}$	GRAND TOTAL
12:00 AM	27	1	28	6	2	8	36
1:00 AM	8	3	11	7	0	7	18
2:00 AM	13	1	14	5	3	8	22
3:00 AM	11	4	15	13	2	15	30
4:00 AM	20	24	44	41	2	43	87
5:00 AM	48	68	116	173	19	192	308
6:00 AM	133	123	256	385	47	432	688
7:00 AM	217	122	339	487	67	554	893
8:00 AM	203	104	307	308	60	368	675
9:00 AM	164	72	236	209	50	259	495
10:00 AM	180	80	260	165	33	198	458
11:00 AM	190	76	266	139	44	183	449
12:00 PM	191	74	265	122	48	170	435
1:00 PM	199	81	280	144	45	189	469
2:00 PM	277	98	375	157	41	198	573
3:00 PM	421	84	505	196	45	241	746
4:00 PM	605	95	700	236	88	324	1,024
5:00 PM	708	85	793	254	79	333	1,126
6:00 PM	442	76	518	166	44	210	728
7:00 PM	225	37	262	98	17	115	377
8:00 PM	129	29	158	64	18	82	240
9:00 PM	128	18	146	44	11	55	201
10:00 PM	85	16	101	30	7	37	138
11:00 PM	47	3	50	16	4	20	70
TOTAL	4,671	1,374	6,045	3,465	776	4,241	10,286

Table 3-2: Summary of 8-Hour Turning Movement Counts

TIME	NORTHBOUND					SOUTHBOUND					EASTBOUND					WESTBOUND					TOTAL
BEGIN/END	U	L	T	R	TOT	U	L	T	R	TOT	U	L	T	R	TOT	U	L	T	R	TOT	INT
6-7	0	87	43	3	133	0	1	115	7	123	0	0	31	354	385	0	10	34	3	47	688
7-8	0	148	64	5	217	0	3	112	7	122	0	8	46	433	487	0	9	53	5	67	893
8-9	0	128	71	4	203	0	11	78	15	104	0	4	44	260	308	0	10	45	5	60	675
2-3	0	182	89	6	277	0	7	75	16	98	0	17	35	105	157	0	3	34	4	41	573
3-4	0	297	116	8	421	0	5	65	14	84	0	15	32	149	196	0	7	34	4	45	746
4-5	0	453	139	13	605	0	12	74	9	95	0	15	54	167	236	0	7	68	13	88	1,024
5-6	0	527	169	12	708	0	5	69	11	85	0	12	48	194	254	0	7	66	6	79	1,126
6-7	0	305	131	6	442	0	6	63	7	76	0	11	41	114	166	0	4	38	2	44	728
TOTAL	0	2,127	822	57	3,006	0	50	651	86	787	0	82	331	1,776	2,189	0	57	372	42	471	6,453
Percentage	0\%	71\%	27\%	2\%		0\%	6\%	83\%	11\%		0\%	4\%	15\%	81\%		0\%	12\%	79\%	9\%		
Maximum	0	527	169	13		0	12	115	16		0	17	54	433		0	10	68	13		
Minimum	0	87	43	3		0	1	63	7		0	0	31	105		0	3	34	2		
-ruck Percentage	0.0\%	2.8\%	2.3\%	5.3\%	2.7\%	0.0\%	14.0\%	1.8\%	2.3\%	2.7\%	0.0\%	2.4\%	2.1\%	2.7\%	2.6\%	0.0\%	7.0\%	3.0\%	4.8\%	3.6\%	2.7\%

4.0 COLLISION DATA

Crash data for the 3-year period (January 1, 2016 to December 31, 2018) was obtained from the University of Florida's Signal 4 Analytics for the intersection of Culbreath Road (CR 581) at Ayers/Hayman Road (CR 576). An overview of the crashes can be found on Table 4-1 and additional details can be found in the Collision Diagram on Figure 4-1.

Table 4-1: Collision Statistics

Crash Type	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	Total
Angle	2	7	4	13
Left Turn	0	0	3	3
Rear End	0	1	2	3
Off Road	0	1	1	2
Animal TOTAL	$\mathbf{2}$	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{2 2}$
	0	0	1	1
Fatalities	0	0	0	0
Injuries*	$1(4)$	$4(10)$	$5(12)$	$10(26)$
Day	2	7	9	18
Night	0	2	2	4
Wet Conditions	0	1	2	3
Dry Conditions	2	8	9	19

*Number of injury crashes (Number of injured people)

A total of 22 crashes were reported during the study period. There were no reported fatalities and 10 crashes resulted in 26 injuries. No crashes involving non-motorists were reported. The majority of crashes at this intersection were angle-type crashes, 7 of which occurred during a 12 -month period.

5.0 QUALITATIVE ASSESSMENT

Currently, there is are flashing beacons at this 4-way intersection with Ayers/Hayman Road being stop controlled. Sight Obstruction and speeding vehicles have been the most prevalent complaint regarding safety at this intersection.

Request: Numerous requests from citizens and the Hernando County Sheriff's Office (HCSO) have been received regarding the potential for crashes to occur at this intersection.

Operations: General Observations: The following is a brief summary of the observed intersection operations:

- In addition to having stop signs on the right and left sides of the eastbound (EB) and westbound (WB) approaches, there is also an overhead flashing beacon with amber for the northbound (NB) and southbound (SB) approaches and red for EB and WB.
- There are ground-in rumble strips for the east and WB approaches beginning approximately $800-\mathrm{ft}$ upstream of each stop bar. However, the rumble stips only extend for about 300-ft in the EB direction leaving a $500-\mathrm{ft}$ gap immediately upstream of the stop bar with no rumble strips. The WB approach includes rumble strips for the full 800 - ft in advance of the stop bar.
- NB and SB vehicles were observed to arrive at fairly random intervals with minor platooning when large trucks traveled slower than passenger vehicles behind them.
- Very high volume of EB right turns in the morning and NB left turns in the afternoon. The afternoon SB volume is light enough that the NB left turn volume was rarely delayed.
- The site was observed after a rain event and showed signs of ponding at the northeast corner. A crash was actually witnessed during the field review where a vehicle hydroplaned within the intersection and was struck by a second hydroplaning vehicle.
o Although this crash event was witnessed during the field review, wet conditions only accounted for 3 of the 22 crashes.

Disabled vehicle and ponding at northeast corner of intersection

Overall Physical Conditions: In addition to observing operational and safety conditions, correctible physical conditions were also identified. The following observations were made during the field review:

- Physical conditions show no obstructions from any approach. This intesction is in a rural area and visibility is not impeded by alignment, vegetation, or buildings.
- There are no crosswalks at this intersection and no pedestrian traffic was observed.
- Each intersection approach has slightly different signage as can be seen in the Condition Diagram.

6.0 SIGNAL WARRANT ANALYSIS

The signal warrant analysis was done in accordance with the procedures and guidelines outlined in the Manual on Uniform Traffic Control Devices (MUTCD 2009) and Manual on Uniform Traffic Studies (MUTS).

For the Signal Warrant Analysis, Culbreath Road is considered the major street and Ayers/Hayman Road. is considered the minor street approach for all the peak hours. Based on the posted speed limit of 45 mph on US 17/92, the 70 percent volume criteria was applied to the analysis. The detailed signal warrant sheets from the MUTCD can be found in Appendix C and Table 6-1 summarizes the results of the warrant analysis. The following additional considerations were included in the analysis:

Table 6-1: Summary of Signal Warrant Analysis

Warrant	Applicable	Satisfied	
1 A	Minimum Vehicular Volume	Yes	No
$1 B$	Interruption of Continuous Traffic	No	No
2	Four Hour Vehicular Volume	Yes	No
3	Peak Hour	No	No
4	Pedestrian Volume	Yes	No
5	School Crossing	No	No
6	Coordinated Signal System	No	No
7	Crash Experience	Yes	No
8	Roadway Network	No	No
9	Grade Crossing	No	

7.0 RECOMMENDATIONS

Based on the data collection, field observations, collision analysis, signal warrant analysis, and engineering judgment, the following conclusions and recommendations were developed:

- This intersection does not meet any of the warrants outlined in the MUTCD, therefore, installation of a traffic signal is not recommended.
- Although a wet weather crash was observed during the site visit, based on the 3-year crash history review, only 3 of 22 crashes occurred on wet pavement, therefore, major drainage improvements are not recommended at this time.

Short Term Improvements

- Consider installing additional rumble stripping along the eastbound approach approximately $\mathbf{1 0 0}^{\prime}$ from the stop bar at 45' spacing to match the westbound approach.
- Consider adjusting the advance warning and route signs per MUTCD standards, as shown on the Improvement Diagram.

Mid Term Improvements

- Consider installing an Intersection Conflict Warning System at the intersection. The system includes warning beacons with TRAFFIC APPROACHING WHEN FLASHING signs along the uncontrolled approaches (CR 581) which are actuated by loops along the stop controlled approaches (CR 576)

Long Term Improvements

- Recommend evaluating the intersection for a roundabout.

APPENDIX A

Approach Photographs

Northbound Approach Photograph

Looking north into the intersection along Culbreath Road

Southbound Approach Photograph

Looking south into the intersection along Culbreath Road

Eastbound Approach Photograph

Looking east into the intersection along Ayers Road

Westbound Approach Photograph

Looking west into the intersection along Hayman Road

APPENDIX B

Traffic Count Data

ICON Consultant Group, Inc.

10006 N. Dale Mabry Hwy, Suite 201
Tampa, Fl. 33618
(813) 962-8689

Date Start: 2/27/2020
Date End: 2/28/2020
Date Printed: 3/4/2020
Culbreath Rd (Northbound)

ICON Consultant Group, Inc.

10006 N. Dale Mabry Hwy, Suite 201
Tampa, Fl. 33618
(813) 962-8689

Date Start: 2/27/2020
Date End: 2/28/2020
Date Printed: 3/4/2020 Culbreath Rd (Southbound)

ICON Consultant Group, Inc.

10006 N. Dale Mabry Hwy, Suite 201
Tampa, Fl. 33618
County: Hernando
Weather: Clear
(813) 962-8689

Date Start: 2/27/2020
Date End: 2/28/2020 Date Printed: 3/4/2020 Ayers Rd (Eastbound)

ICON Consultant Group, Inc.

10006 N. Dale Mabry Hwy, Suite 201
Tampa, Fl. 33618
(813) 962-8689

Date Start: 2/27/2020
Date End: 2/28/2020 Date Printed: 3/4/2020 Hayman Rd (Westbound)

/CON Consu/tant Group Inc.

Culbreath Rd at Ayers Rd /

Vehicles \& Heavy Vehicles

Start Time	Culbreath Rd Northbound						Culbreath Rd Southbound						Ayers Rd Eastbound						Hayman Rd Westbound						$\begin{array}{\|l} \hline \text { Int. } \\ \text { Total } \\ \hline \end{array}$
	$\begin{gathered} \text { U- } \\ \text { Turn } \end{gathered}$	LT	TH	RT		App. Total	$\begin{gathered} \text { U- } \\ \text { Turn } \\ \hline \end{gathered}$	LT	TH	RT		App. Total	$\begin{gathered} \text { U- } \\ \text { Turn } \end{gathered}$	LT	TH	RT		App. Total	$\begin{aligned} & \text { U- } \\ & \text { Turn } \end{aligned}$	LT	TH	RT		App. Total	
6:00 AM	0	12	10	0	0	22	0	0	23	3	0	26	0	0	3	68	0	71	0	0	6	1	0	7	126
6:15 AM	0	19	10	1	0	30	0	0	33	0	0	33	0	0	7	96	0	103	0	4	12	0	0	16	182
6:30 AM	0	24	13	0	0	37	0	1	25	3	0	29	0	0	11	101	0	112	0	3	7	2	0	12	190
6:45 AM	0	32	10	2	0	44	0	0	34	1	0	35	0	0	10	89	0	99	0	3	9	0	0	12	190
Hourly Total	0	87	43	3	0	133	0	1	115	7	0	123	0	0	31	354	0	385	0	10	34	3	0	47	688
7:00 AM	0	41	13	1	0	55	0	0	25	1	0	26	0	0	6	132	0	138	0	3	17	2	0	22	241
7:15 AM	0	42	15	2	0	59	0	1	38	1	0	40	0	2	13	102	0	117	0	1	13	3	0	17	233
7:30 AM	0	38	16	1	0	55	0	1	29	3	0	33	0	2	16	108	0	126	0	2	12	0	0	14	228
7:45 AM	0	27	20	1	0	48	0	1	20	2	0	23	0	4	11	91	0	106	0	3	11	0	0	14	191
Hourly Total	0	148	64	5	0	217	0	3	112	7	0	122	0	8	46	433	0	487	0	9	53	5	0	67	893
8:00 AM	0	28	17	2	0	47	0	2	21	3	0	26	0	0	11	83	0	94	0	1	12	0	0	13	180
8:15 AM	0	31	20	1	0	52	0	3	16	4	0	23	0	0	11	67	0	78	0	4	16	1	0	21	174
8:30 AM	0	38	19	0	0	57	0	2	24	6	0	32	0	2	10	50	0	62	0	2	6	2	0	10	161
8:45 AM	0	31	15	1	0	47	0	4	17	2	0	23	0	2	12	60	0	74	0	3	11	2	0	16	160
Hourly Total	0	128	71	4	0	203	0	11	78	15	0	104	0	4	44	260	0	308	0	10	45	5	0	60	675
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2:00 PM	0	46	20	2	0	68	0	3	18	6	0	27	0	2	12	22	0	36	0	2	10	0	0	12	143
2:15 PM	0	42	23	1	0	66	0	0	16	1	0	17	0	9	6	21	0	36	0	0	11	0	0	11	130
2:30 PM	0	42	22	2	0	66	0	3	17	5	0	25	0	5	13	27	0	45	0	0	10	2	0	12	148
2:45 PM	0	52	24	1	0	77	0	1	24	4	0	29	0	1	4	35	0	40	0	1	3	2	0	6	152
Hourly Total	0	182	89	6	0	277	0	7	75	16	0	98	0	17	35	105	0	157	0	3	34	4	0	41	573
3:00 PM	0	65	15	1	0	81	0	0	18	1	0	19	0	4	9	35	0	48	0	1	12	1	0	14	162
3:15 PM	0	72	33	1	0	106	0	3	14	2	0	19	0	3	8	39	0	50	0	2	8	0	0	10	185
3:30 PM	0	71	22	2	0	95	0	1	14	7	0	22	0	4	9	39	0	52	0	0	11	2	0	13	182
3:45 PM	0	89	46	4	0	139	0	1	19	4	0	24	0	4	6	36	0	46	0	4	3	1	0	8	217
Hourly Total	0	297	116	8	0	421	0	5	65	14	0	84	0	15	32	149	0	196	0	7	34	4	0	45	746
4:00 PM	0	98	29	5	0	132	0	4	25	5	0	34	0	3	10	36	0	49	0	3	10	3	0	16	231
4:15 PM	0	107	35	2	0	144	0	3	15	1	0	19	0	4	5	43	0	52	0	1	20	3	0	24	239
4:30 PM	0	132	36	3	0	171	0	3	14	1	0	18	0	3	13	44	0	60	0	1	15	3	0	19	268
4:45 PM	0	116	39	3	0	158	0	2	20	2	0	24	0	5	26	44	0	75	0	2	23	4	0	29	286
Hourly Total	0	453	139	13	0	605	0	12	74	9	0	95	0	15	54	167	0	236	0	7	68	13	0	88	1024
5:00 PM	0	123	41	3	0	167	0	0	19	0	0	19	0	3	16	53	0	72	0	2	23	1	0	26	284
5:15 PM	0	174	48	2	0	224	0	3	20	2	0	25	0	2	7	43	0	52	0	3	18	2	0	23	324
5:30 PM	0	139	44	2	0	185	0	1	12	6	0	19	0	3	18	50	0	71	0	2	14	2	0	18	293
5:45 PM	0	91	36	5	0	132	0	1	18	3	0	22	0	4	7	48	0	59	0	0	11	1	0	12	225
Hourly Total	0	527	169	12	0	708	0	5	69	11	0	85	0	12	48	194	0	254	0	7	66	6	0	79	1126
6:00 PM	0	100	32	1	0	133	0	3	22	2	0	27	0	0	17	50	0	67	0	2	9	0	0	11	238
6:15 PM	0	94	45	1	0	140	0	1	11	1	0	13	0	6	13	28	0	47	0	2	10	1	0	13	213
6:30 PM	0	62	30	4	0	96	0	1	15	2	0	18	0	1	9	20	0	30	0	0	8	1	0	9	153
6:45 PM	0	49	24	0	0	73	0	1	15	2	0	18	0	4	2	16	0	22	0	0	11	0	0	11	124
Hourly Total	0	305	131	6	0	442	0	6	63	7	0	76	0	11	41	114	0	166	0	4	38	2	0	44	728
Grand Total	0	2127	822	57	0	3006	0	50	651	86	0	787	0	82	331	1776	0	2189	0	57	372	42	0	471	6453
Approach \%	0.0	70.8	27.3	1.9	-	-	0.0	6.4	82.7	10.9	-	-	0.0	3.7	15.1	81.1	-	-	0.0	12.1	79.0	8.9	-	-	-
Total \%	0.0	33.0	12.7	0.9	-	46.6	0.0	0.8	10.1	1.3	-	12.2	0.0	1.3	5.1	27.5	-	33.9	0.0	0.9	5.8	0.7	-	7.3	-
Vehicles	0	2068	803	54	-	2925	0	43	639	84	-	766	0	80	324	1728	-	2132	0	53	361	40	-	454	6277
\% Vehicles	-	97.2	97.7	94.7	-	97.3	-	86.0	98.2	97.7	-	97.3	-	97.6	97.9	97.3	-	97.4	-	93.0	97.0	95.2	$-$	96.4	97.3
Heavy Vehicles	0	59	19	3	-	81	0	7	12	2	-	21	0	2	7	48	-	57	0	4	11	2	-	17	176
\% Heavy Vehicles	-	2.8	2.3	5.3	-	2.7	-	14.0	1.8	2.3	-	2.7	-	2.4	2.1	2.7	-	2.6	-	7.0	3.0	4.8	-	3.6	2.7
$\begin{gathered} \text { Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0

ICON Consultant Group Inc.

Culbreath Rd at Ayers Rd /
Hayman Rd
County: Hernando
Weather: Clear

10006 N. Dale Mabry Suite 201
Tampa, Florida, United States 33618
(813) 962-8689

Count Name: 01_Culbreath Rd at Ayers/ Hayman Rd SWA
Start Date: 02/27/2020
Page No: 1

Heavy Vehicles

Start Time	Culbreath Rd Northbound						Culbreath Rd Southbound						Ayers Rd Eastbound						Hayman Rd Westbound						Int. Total
	$\begin{gathered} \text { U- } \\ \text { Turn } \end{gathered}$	LT	TH	RT		App. Total	$\begin{gathered} \text { U- } \\ \text { Turn } \\ \hline \end{gathered}$	LT	TH	RT		App. Total	$\begin{gathered} \text { U- } \\ \text { Turn } \\ \hline \end{gathered}$	LT	TH	RT		App. Total	$\begin{gathered} \text { U- } \\ \text { Turn } \\ \hline \end{gathered}$	LT	TH	RT		App. Total	
6:00 AM	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	3	0	3	0	0	1	0	0	1	5
6:15 AM	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	2
6:30 AM	0	1	1	0	0	2	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	3
6:45 AM	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	2
Hourly Total	0	1	3	0	0	4	0	0	1	0	0	1	0	0	0	5	0	5	0	0	2	0	0	2	12
7:00 AM	0	1	0	1	0	2	0	0	1	0	0	1	0	0	0	2	0	2	0	0	0	0	0	0	5
7:15 AM	0	2	1	0	0	3	0	1	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	6
7:30 AM	0	2	2	1	0	5	0	0	1	0	0	1	0	0	0	4	0	4	0	0	0	0	0	0	10
7:45 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	3
Hourly Total	0	6	3	2	0	11	0	1	2	0	0	3	0	0	0	9	0	9	0	0	1	0	0	1	24
8:00 AM	0	3	1	0	0	4	0	1	1	0	0	2	0	0	0	2	0	2	0	0	0	0	0	0	8
8:15 AM	0	1	0	0	0	1	0	1	1	0	0	2	0	0	0	1	0	1	0	0	1	0	0	1	5
8:30 AM	0	3	2	0	0	5	0	1	0	0	0	1	0	0	1	3	0	4	0	0	0	0	0	0	10
8:45 AM	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0	3	0	3	0	0	0	0	0	0	6
Hourly Total	0	10	3	0	0	13	0	3	2	0	0	5	0	0	1	9	0	10	0	0	1	0	0	1	29
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2:00 PM	0	3	0	0	0	3	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	4
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	2
2:30 PM	0	2	1	0	0	3	0	1	0	1	0	2	0	1	1	4	0	6	0	0	0	0	0	0	11
2:45 PM	0	4	1	0	0	5	0	0	2	0	0	2	0	0	0	2	0	2	0	0	0	0	0	0	9
Hourly Total	0	9	2	0	0	11	0	1	3	1	0	5	0	1	1	8	0	10	0	0	0	0	0	0	26
3:00 PM	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0	2	0	2	0	0	1	0	0	1	6
3:15 PM	0	1	2	0	0	3	0	0	0	0	0	0	0	0	0	3	0	3	0	0	1	0	0	1	7
3:30 PM	0	1	0	0	0	1	0	0	1	1	0	2	0	1	0	2	0	3	0	0	1	0	0	1	7
3:45 PM	0	1	1	0	0	2	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	3
Hourly Total	0	6	3	0	0	9	0	0	1	1	0	2	0	1	0	8	0	9	0	0	3	0	0	3	23
4:00 PM	0	3	0	0	0	3	0	0	1	0	0	1	0	0	1	2	0	3	0	1	0	1	0	2	9
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	2
4:30 PM	0	1	1	0	0	2	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	4
4:45 PM	0	4	0	0	0	4	0	1	0	0	0	1	0	0	3	3	0	6	0	0	0	1	0	1	12
Hourly Total	0	8	1	0	0	9	0	2	1	0	0	3	0	0	4	7	0	11	0	1	1	2	0	4	27
5:00 PM	0	3	0	1	0	4	0	0	1	0	0	1	0	0	0	0	0	0	0	1	2	0	0	3	8
5:15 PM	0	5	2	0	0	7	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	8
5:30 PM	0	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	6
5:45 PM	0	1	1	0	0	2	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	5
Hourly Total	0	14	3	1	0	18	0	0	2	0	0	2	0	0	0	2	0	2	0	2	3	0	0	5	27
6:00 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6:15 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	3
6:30 PM	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
6:45 PM	0	1	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Hourly Total	0	5	1	0	0	6	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	8
Grand Total	0	59	19	3	0	81	0	7	12	2	0	21	0	2	7	48	0	57	0	4	11	2	0	17	176
Approach \%	0.0	72.8	23.5	3.7	-	-	0.0	33.3	57.1	9.5	$-$	-	0.0	3.5	12.3	84.2	-	-	0.0	23.5	64.7	11.8	-	-	-
Total \%	0.0	33.5	10.8	1.7	$-$	46.0	0.0	4.0	6.8	1.1	-	11.9	0.0	1.1	4.0	27.3	-	32.4	0.0	2.3	6.3	1.1	-	9.7	-
Heavy Vehicles	0	59	19	3	-	81	0	7	12	2	-	21	0	2	7	48	-	57	0	4	11	2	-	17	176
\% Heavy Vehicles	-	100.0	100.0	100.0	-	100.0	-	100.0	100.0	100.0	-	100.0	-	100.0	100.0	100.0	-	100.0	-	100.0	100.0	100.0	-	100.0	100.0

Weather: Clear
 County: Hernando

Pedestrian / Bicycle Count

Field Data Sheet

File Name: 001_Ped-Bike
Start Date: 2/27/2020
Start Time: 6:00 AM
End Time: 7:00 PM

APPENDIX C

Signal Warrant Worksheets

Condition B - Interruption of Continuous Traffic

Condition B is intended for application where Condition A is not satisfied and the traffic volume on a major street is so heavy that traffic on the minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Applicable:	\square Yes	\square No
100\% Satisfied:	\square Yes	\square No
80\% Satisfied:	\square Yes	\square No
70\% Satisfied:	\square Yes	\square No

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	750	600	525	75	60	53
2 or more	1	900	720	630	75	60	53
2 or more	2 or more	900	720	630	100	80	70
1	2 or more	750	600	525	100	80	70

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{\mathrm{b}}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

Eight Highest Hours								
Street	\sum k k k	\sum \sum \vdots \vdots		\sum_{0} \sum_{N}^{M} \sum_{N}^{1}	$\sum_{\sum_{n}^{N}}^{\sum_{N}^{+}}$	\sum \sum_{0}^{0} \sum_{i}^{1}	$\begin{aligned} & \sum_{0}^{2} \\ & \sum_{0}^{0} \\ & \sum_{0}^{1} \end{aligned}$	\sum_{0}^{\sum} \sum_{0}^{1} 0
Major	256	339	307	375	505	700	793	518
Minor	44	62	55	52	47	75	73	52

Existing Volumes

Volume Level Criteria

1. Is the posted speed or 85 th-percentile of major street $>40 \mathrm{mph}(70 \mathrm{~km} / \mathrm{h})$?

" 70% " volume level may be used if Question 1 or 2 above is answered "Yes"
$\square 70 \% \square 100 \%$

WARRANT 3 - PEAK HOUR

If all three criteria are fulfilled or the plotted point lies above the appropriate line, then the warrant is satisfied.

Unusual condition justifying use of warrant:

Record hour when criteria are fulfilled and the corresponding delay or volume in boxes provided.

Peak Hour 100\% Volume		
Time	Major Vol.	Minor Vol.

Peak Hour 70\% Volume

Time	Major Vol.	Minor Vol.

Criteria

1. Delay on Minor Approach *(vehicle-hours)			
Approach Lanes	1	2	
Delay Criteria*	4.0	5.0	
Delay*			
Fulfilled?:			
Yes			

2. Volume on Minor Approach One-Direction *(vehicles per hour)					
Approach Lanes	1	2			
Volume Criteria*	100	150			
Volume*					
Fulfilled?:	\square	Yes		\square No	N
:---					

3. Total Intersection Entering Volume **(vehicles per hour)			
No. of Approaches	3	4	
Volume Criteria*	650	800	
Volume*			
Fulfilled?:	\square	Yes	

Plot volume combination on the applicable figure below.

* Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume threshold for a minor street approach with one lane.

FIGURE 4C-4: Criteria for "70\%" Volume Level
(Community Less than 10,000 population or above $70 \mathrm{~km} / \mathrm{hr}$ (40 mph) on Major Street)

* Note: 100 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 75 vph applies as the lower threshold volume threshold for a minor street approach with one lane.

State of Florida Department of Transportation

TRAFFIC SIGNAL WARRANT SUMMARY

City:	NA
County:	08 - Hernando
District:	Seven
Major Street:	CR 581
Minor Street:	CR 420

Engineer:
Date \qquad

Lanes:	$\mathbf{1}$	Major Approach Speed: $\quad \mathbf{4 5}$
Lanes:	$\mathbf{1} \quad$ Minor Approach Speed:	

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

Volume Level Criteria

1. Is the posted speed or 85 th-percentile of major street $>40 \mathrm{mph}(70 \mathrm{~km} / \mathrm{h})$?
2. Is the intersection in a built-up area of an isolated community with a population $<10,000$?

" 70% " volume level may be used if Question 1 or 2 above is answered "Yes"
$\square 70 \% \quad \square 100 \%$

WARRANT 4 - PEDESTRIAN VOLUME
For each of any 4 hours of an average day, the plotted points lie above the appropriate line, then the warrant is satisfied.

Applicable:	
Satisfied:	\square Yes \square No
\square No	

Plot four volume combinations on the applicable figure below.
Figure 4C-5. Criteria for "100\%" Volume Level

Four Highest Hours	Volumes	
	Major Street	Pedestrian Total

* Note: 107 pph applies as the lower threshold volume

Figure 4C-6 Criteria for " 70% " Volume Level

* Note: 75 pph applies as the lower threshold volume

WARRANT 4 - PEDESTRIAN VOLUME

For 1 hour (any four consecutive 15-minute periods) of an average day, the plotted point falls above the appropriate line, then the warrant is satisfied.

Applicable:	\square Yes	\square No
Satisfied:	\square Yes	
\square		

Plot one volume combination on the applicable figure below.

100% Volume Level		
	Volumes	
	Major Street	Pedestrian Total

Figure 4C-7. Criteria for "100\%" Volume Level - Peak Hour

* Note: 133 pph applies as the lower threshold volume

Figure 4C-8 Criteria for "70\%" Volume Level - Peak Hour

[^1]TRAFFIC SIGNAL WARRANT SUMMARY

City:	NA
County:	08 - Hernando
District:	Seven
Major Street:	CR 581
Minor Street:	CR 420

Engineer:
Date:

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 5 - SCHOOL CROSSING

Record hours where criteria are fulfilled and the corresponding volume or gap frequency in the boxes provided. The warrant is satisfied if all three of the criteria are fulfilled.

Applicable:Yes \square No
Satisfied:Yes \square No

TRAFFIC SIGNAL WARRANT SUMMARY

City:	NA	Engineer: Date:	DH	
County:	08 - Hernando		April 9, 2020	
District:	Seven			
Major Street:	CR 581	Lanes: 1	Major Approach Speed:	45
Minor Street:	CR 420	Lanes: 1	Minor Approach Speed:	55

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 6-COORDINATED SIGNAL SYSTEM

Indicate if the criteria are fulfilled in the boxes provided. The warrant is satisfied if either criterion is fulfilled. This warrant should not be applied when the resulting signal spacing would be less than 300 m (1,000 ft.).

Applicable:	\square Yes $\quad \checkmark$ No
Satisfied:	\square Yes \square No

	Criteria	Fulfilled?
	Yes	No
1. On a one-way street or a street that has traffic predominately in one direction, the adjacent signals are so far apart that they do not provide the necessary degree of vehicle platooning.		
2. On a two-way street, adjacent signals do not provide the necessary degree of platooning, and the proposed and adjacent signals will collectively provide a progressive operation.		

TRAFFIC SIGNAL WARRANT SUMMARY
Major Street:
Minor Street:
\square
Engineer: \qquad

Lanes: $\quad 1 \quad 1$
Lanes:

Major Approach Speed: \qquad

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 7 -CRASH EXPERIENCE

Record hours where criteria are fulfilled, the corresponding volume, and other information in the boxes provided. The warrant is satisfied if all three of the criteria are fulfilled.

Applicable:Yes
Satisfied:Yes \square No

Criteria		Hour		Volume		Met?		Fulfilled?			
		Major	Minor	Yes	No	Yes					
One of the warrants to the right is met.	Warrant 1, Condition A (80\% satisfied)								x		x
	Warrant 1, Condition B (80\% satisfied)						x				
	Warrant 4, Pedestrian Volume at 80% of volume requirements: \# ped/hr for four (4) hours or \# ped/hr for one (1) hour.						x				
Adequat 2. to reduce	trial of other remedial measure has failed crash frequency.	Measure tried:		None					x		
Five or m 3. to correc month p	re reported crashes, of types susceptible on by signal, have occurred within a 12iod.	Observed Crash Types:	Angle	Number per 12 m	of crash onths:		7	x			

TRAFFIC SIGNAL WARRANT SUMMARY

City:	NA
County:	
District:	08-Hernando
Major Street:	Seven
Minor Street:	

Engineer: \quad DH
Date:
April 9, 2020

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 8 -ROADWAY NETWORK

Record hours where criteria are fulfilled, and the corresponding volume or other information in the boxes provided. The warrant is satisfied if at least one of the criteria is fulfilled and if all intersecting routes have one or more of the Major Route characteristics listed.

Characteristics of Major Routes		Met?		Fulfilled?	
		Yes	No	Yes	No
Part of the street or highway system that serves as the principal roadway 1. network for through traffic flow.	Major Street:				
	Minor Street:				
2. Rural or suburban highway outside of, entering, or traversing a city.	Major Street:				
	Minor Street:				
3. Appears as a major route on an official plan.	Major Street:				
	Minor Street:				

TRAFFIC SIGNAL WARRANT SUMMARY

City:	NA
County:	08 - Hernando
District:	Seven
Major Street:	CR 581
Minor Street:	CR 420

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

Approach Lane Criteria

1. How many approach lanes are there at the track crossing?

If there is 1 lane, use Figure $4 \mathrm{C}-9$ and if there are 2 or more, use Figure $4 \mathrm{C}-10$.
$\square 1$ $\begin{array}{ll}1 & \square 2 \\ \text { Fig 4C-9 } & \square \text { Fig }\end{array}$ 2 or Fig 4C-9 Fig 4C-10

WARRANT 9 - INTERSECTION NEAR A GRADE CROSSING

This signal warrant should be applied only after adequate consideration has been given to other alternatives or after a trial of an alternative has failed to alleviate the safety concerns associated with the grade crossing.
Indicate if both criteria are fulfilled in the boxes provided. The warrant is satisfied if both criteria are met.

Applicable:	\square Yes	\square No
Satisfied:	\square Yes	\square No

Criteria	Fulfilled?	
	Yes	No
1. A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach; and	\square	\square
2. During the highest traffic volume hour during which the rail uses the crossing, the plotted point falls above the applicable curve for the existing combination of approach lanes over the track and the distance D (clear storage distance).	\square	\square

Use the following tables (4C-2, 4C-3, and 4C-4 to appropriately adjust the minor-street approach volume).

Inputs

Occurrences of Rail traffic per day
\% of High Occupancy Buses on Minor-Street Approach
Enter D (feet)
\% of Tractor-Trailer Trucks on Minor-Street Approach
Adjustment Factors from Tables

Table 4C-2. Adjustment Factor for Daily Frequency of Rail Traffic

Table 4C-3. Adjustment Factor for Percentage of High-

Rail Traffic	
Rail Traffic per Day	Adjustment Factor
1	0.67
2	0.91
3 to 5	1.00
6 to 8	1.18
9 to 11	1.25
12 or more	1.33

Occupancy Buses

\% of High-Occupancy Buses* on Minor Street Approach	Adjustment Factor
0%	1.00
2%	1.09
4%	1.19
6% or more	
${ }^{\text {* }}$ A high-occupancy bus is defined as a bus occupied by at least 20 people	

Table 4C-4. Adjustment Factor for Percentage of Tractor-Trailer Trucks

\% of Tractor-Trailer Trucks on Minor- Street Approach	Adjustment Factor	
	D less than 70 feet	D of 70 feet or more
0% to 2.5%	0.50	0.50
2.6% to 7.5%	0.75	0.75
7.6% to 12.5%	1.00	1.00
12.6% to 17.5%	2.30	1.15
17.6% to 22.5%	2.70	1.35
22.6% to 27.5%	3.28	1.64
More than 27.5%	4.18	2.09

TRAFFIC SIGNAL WARRANT SUMMARY

City:	NA	Engineer: Date:	DH	
County:	08 - Hernando		April 9, 2020	
District:	Seven			
Major Street:	CR 581	Lanes: 1	Major Approach Speed:	45
Minor Street:	CR 420	Lanes: 1	Minor Approach Speed:	55

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

CONCLUSIONS

Remarks: \qquad

WARRANTS SATISFIED:

| \| | Warrant 1 | \| | Not Applicable |
| :---: | :---: |
| \square Warrant 2 | \square Not Applicable |
| \| | Warrant 3 | \| V Not Applicable |
| \square Warrant 4 | \square Not Applicable |
| \| I Warrant 5 | \| V Not Applicable |
| \| I Warrant 6 | \| $/$ Not Applicable |
| \square Warrant 7 | \square Not Applicable |
| \| | Warrant 8 | \| V Not Applicable |
| \square Warrant 9 | \checkmark Not Applicable |

APPENDIX B

Historical AADT Reports

COUNTY: 08 - HERNANDO
SITE: 9018 - AYERS RD, E OF US41/BROAD ST

YEAR	AAD T		DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2022	7700	C	E	3700	W	4000	9.50	54.50	6.50
2021	7500	C	E	3500	W	4000	9.50	54.20	4.70
2020	4000	X		0		0	9.50	54.30	4.50
2019	4100	X		0		0	9.50	54.30	4.50
2018	4000	X		0		0	9.50	54.40	13.80
2017	3900	6		0		0	9.50	55.60	6.70
2016	3700	V		0		0	9.50	54.80	11.80
2015	3500	R		0		0	9.50	55.00	13.20
2014	3300	T					9.50	56.00	10.70
2013	3300	S		0		0	9.50	57.60	13.30
2012	3300	F		0		0	9.50	55.00	12.10
2011	3300	C	E	0	W	0	9.50	55.00	12.40

AADT FLAGS: $C=$ COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE
$S=$ SECOND YEAR ESTIMATE; $T=$ THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\begin{array}{ll}S & =\text { SECOND YEAR ESTIMATE; } \mathrm{T}=\text { THIRD YEAR ESTIMATE; R }=\text { FOURH } \\ \mathrm{V}=\mathrm{FIFTH} \text { YEAR ESTIMATE; } 6=\text { SIXTH YEAR ESTIMATE; X }=\text { UNKNOWN }\end{array}$
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

COUNTY: 08 - HERNANDO
SITE: 9607 - CR 581, BETWEEN 'CR 576' AND 'ENDSLEY RD'

YEAR	AADT	DIRECTION 1			CTION	*K FACTOR	D FACTOR	T FACTOR
2022	3400 F	N	1800	S	1600	9.50	54.50	6.50
2021	3200 C	N	1700	S	1500	9.50	54.20	4.70

AADT FLAGS: $C=$ COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE
$S=$ SECOND YEAR ESTIMATE; $T=$ THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; $\mathrm{X}=$ UNKNOWN
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

COUNTY: 08 - HERNANDO
SITE: 9624 - CR 572 B/W EMERSON RD AND CULBREATH RD

YEAR	AADT		DIRECTION 1		DIRECTION 2		*K FACTOR	D FACTOR	T FACTOR
2022	4300	F	E	2200	W	2100	9.50	54.50	11.20
2021	4100	C	E	2100	W	2000	9.50	54.20	6.10

AADT FLAGS: $C=$ COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE
$S=$ SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE $\mathrm{V}=\mathrm{FIFTH}$ YEAR ESTIMATE; $6=$ SIXTH YEAR ESTIMATE; X $=$ UNKNOWN
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

APPENDIX C

Operational Analysis Reports
(Synchro and Sidra)

Intersection													
Int Delay, s/veh	18.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		${ }_{\dagger}$			${ }_{4}$			${ }_{4}$			${ }_{\dagger}$		
Traffic Vol, veh/h	9	53	498	10	61	6	170	74	6	3	129	8	
Future Vol, veh/h	9	53	498	10	61	6	170	74	6	3	129	8	
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-		None	-	-	None	-	-	None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	
Mumt Flow	10	59	552	11	68	7	188	82	7	3	143	9	

HCM LOS

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1490	-	-	-	-1337	-	-
HCM Lane V/C Ratio	0.451	-	-	-	-0.005	-	-
HCM Control Delay (s)	9.4	0	-	-	-	7.7	0

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

Intersection													
Int Delay, s/veh	5.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		${ }^{\text {¢ }}$			\dagger			¢			${ }^{4}$		
Traffic Vol, veh/h	17	70	281	10	96	9	764	245	17	7	100	16	
Future Vol, veh/h	17	70	281	10	96	9	764	245	17	7	100	16	
Conflicting Peds, \#hhr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mumt Flow	19	78	312	11	106	10	847	272	19	8	111	18	

HCM LOS

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1457	-	-	-	-1271	-	-
HCM Lane V/C Ratio	0.581	-	-	-	-0.006	-	-
HCM Control Delay (s)	10.8	0	-	-	-	7.8	0
-							
HCM Lane LOS	B	A	-	-	-	A	A
HCM 95th \%tile Q(veh)	4	-	-	-	-	0	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\dagger		${ }^{1 /}$	\uparrow		${ }^{7}$	\uparrow		${ }^{*}$	\uparrow	
Traffic Volume (vph)	9	53	498	10	61	6	170	74	6	3	129	8
Future Volume (vph)	9	53	498	10	61	6	170	74	6	3	129	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.864			0.986			0.988			0.991	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1752	1594	0	1752	1819	0	1752	1823	0	1752	1828	0
Flt Permitted	0.708			0.388			0.660			0.699		
Satd. Flow (perm)	1306	1594	0	716	1819	0	1217	1823	0	1289	1828	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		552			7			7			7	
Link Speed (mph)		55			55			45			45	
Link Distance (ft)		977			1082			1598			1480	
Travel Time (s)		12.1			13.4			24.2			22.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%
Heavy Vehicles (\%)	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%
Adj. Flow (vph)	10	59	552	11	68	7	188	82	7	3	143	9
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	10	611	0	11	75	0	188	89	0	3	152	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	23.5	23.5		23.5	23.5		22.8	22.8		22.8	22.8	
Total Split (s)	26.0	26.0		26.0	26.0		24.0	24.0		24.0	24.0	
Total Split (\%)	52.0\%	52.0\%		52.0\%	52.0\%		48.0\%	48.0\%		48.0\%	48.0\%	
Maximum Green (s)	18.5	18.5		18.5	18.5		17.2	17.2		17.2	17.2	
Yellow Time (s)	5.5	5.5		5.5	5.5		4.8	4.8		4.8	4.8	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.5	7.5		7.5	7.5		6.8	6.8		6.8	6.8	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None										
Act Effct Green (s)	14.1	14.1		14.1	14.1		11.2	11.2		11.1	11.1	
Actuated g/C Ratio	0.43	0.43		0.43	0.43		0.34	0.34		0.34	0.34	
v/c Ratio	0.02	0.61		0.04	0.10		0.45	0.14		0.01	0.24	
Control Delay	10.0	5.2		10.4	9.7		15.0	10.0		10.0	11.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.0	5.2		10.4	9.7		15.0	10.0		10.0	11.0	
LOS	A	A		B	A		B	B		A	B	
Approach Delay		5.3			9.8			13.4			11.0	
Approach LOS		A			A			B			B	
Queue Length 50th (ft)	1	8		1	9		26	10		0	18	
Queue Length 95th (ft)	9	69		10	33		88	40		5	63	
Internal Link Dist (ft)		897			1002			1518			1400	
Turn Bay Length (ft)												
Base Capacity (vph)	798	1188		437	1114		708	1064		750	1066	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.01	0.51		0.03	0.07		0.27	0.08		0.00	0.14	

隹section Summary
Area Type:

Other

Cycle Length: 50
Actuated Cycle Length: 32.8
Natural Cycle: 50
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 8.4
Intersection LOS: A
Intersection Capacity Utilization 68.8\%
ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 3:

Ayres at Culbreath AM _2025
Synchro 11 Report
Page 2

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	F		\%	${ }_{7}$		\%	$\hat{\square}$		\%	${ }_{7}$	
Traffic Volume (vph)	14	55	223	8	76	7	606	194	14	6	79	13
Future Volume (vph)	14	55	223	8	76	7	606	194	14	6	79	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.880			0.987			0.990			0.979	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1639	0	1770	1839	0	1770	1844	0	1770	1824	0
Flt Permitted	0.697			0.395			0.418			0.615		
Satd. Flow (perm)	1298	1639	0	736	1839	0	779	1844	0	1146	1824	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		207			5			8			8	
Link Speed (mph)		55			55			45			45	
Link Distance (t)		977			1082			1598			1480	
Travel Time (s)		12.1			13.4			24.2			22.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%
Adj. Flow (vph)	16	61	247	9	84	8	672	215	16	7	88	14

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	16	308	0	9	92	0	672	231	0	7	102	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (tt)	20	100		20	100		20	100		20	100	
Trailing Detector (tt)	0	0		0	0		0	0		0	0	
Detector 1 Position(tt)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex										

Detector 1 Channel								
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(tt)		94		94		94		94
Detector 2 Size(ft)		6		6		6		6
Detector 2 Type		Cl+Ex		Cl+Ex		Cl+Ex		Cl+Ex

Detector 2 Channel

Detector 2 Extend (s)		0.0		0.0		0.0		0.0
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	NA
Protected Phases		4		8	5	2	6	6
Permitted Phases	4		8		2		0	6
Detector Phase	4	4	8	8	5	2	6	

Switch Phase

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	4.0	4.0		4.0	4.0		5.0	4.0		4.0	4.0	
Minimum Split (s)	23.5	23.5		23.5	23.5		9.5	22.8		22.8	22.8	
Total Split (s)	27.0	27.0		27.0	27.0		38.0	63.0		25.0	25.0	
Total Split (\%)	30.0\%	30.0\%		30.0\%	30.0\%		42.2\%	70.0\%		27.8\%	27.8\%	
Maximum Green (s)	19.5	19.5		19.5	19.5		33.5	56.2		18.2	18.2	
Yellow Time (s)	5.5	5.5		5.5	5.5		3.5	4.8		4.8	4.8	
All-Red Time (s)	2.0	2.0		2.0	2.0		1.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.5	7.5		7.5	7.5		4.5	6.8		6.8	6.8	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None										
Act Effct Green (s)	10.8	10.8		10.8	10.8		38.7	36.1		9.3	9.3	
Actuated g/C Ratio	0.17	0.17		0.17	0.17		0.61	0.57		0.15	0.15	
v/c Ratio	0.07	0.68		0.07	0.29		0.75	0.22		0.04	0.37	
Control Delay	26.9	18.9		27.5	28.0		13.9	6.5		30.0	31.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	26.9	18.9		27.5	28.0		13.9	6.5		30.0	31.9	
LOS	C	B		C	C		B	A		C	C	
Approach Delay		19.3			27.9			12.0			31.8	
Approach LOS		B			C			B			C	
Queue Length 50th (ft)	6	39		3	33		118	32		3	37	
Queue Length 95th (ft)	23	124		16	78		312	82		15	92	
Internal Link Dist (ft)		897			1002			1518			1400	
Turn Bay Length (ft)												
Base Capacity (vph)	457	711		259	651		1146	1556		376	605	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.04	0.43		0.03	0.14		0.59	0.15		0.02	0.17	

Intersection Summary

```
Area Type: Other
```

Cycle Length: 90
Actuated Cycle Length: 63.2
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 16.3
Intersection LOS: B
Intersection Capacity Utilization 69.8\%
ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 3:

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\hat{F}		${ }^{7}$	\hat{F}		\%	$\hat{\square}$		\%	\uparrow	
Traffic Volume (vph)	12	67	628	13	77	7	215	93	7	4	162	10
Future Volume (vph)	12	67	628	13	77	7	215	93	7	4	162	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.864			0.987			0.989			0.991	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1609	0	1770	1839	0	1770	1842	0	1770	1846	0
Flt Permitted	0.697			0.247			0.637			0.685		
Satd. Flow (perm)	1298	1609	0	460	1839	0	1187	1842	0	1276	1846	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		567			8			7			6	
Link Speed (mph)		55			55			45			45	
Link Distance (t)		977			1082			1598			1480	
Travel Time (s)		12.1			13.4			24.2			22.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%
Adj. Flow (vph)	13	74	696	14	85	8	238	103	8	4	180	11

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	13	770	0	14	93	0	238	111	0	4	191	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(t)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (tt)	20	100		20	100		20	100		20	100	
Trailing Detector (tt)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex										

Detector 1 Channel								
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(tt)		94		94		94		94
Detector 2 Size(ft)		6		6		6		6
Detector 2 Type		Cl+Ex		Cl+Ex		Cl+Ex		Cl+Ex

Detector 2 Channel

Detector 2 Extend (s)		0.0		0.0		0.0		0.0
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8	2		6	6
Permitted Phases	4		8		2		6	6

Switch Phase

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	23.5	23.5		23.5	23.5		22.8	22.8		22.8	22.8	
Total Split (s)	32.0	32.0		32.0	32.0		28.0	28.0		28.0	28.0	
Total Split (\%)	53.3\%	53.3\%		53.3\%	53.3\%		46.7\%	46.7\%		46.7\%	46.7\%	
Maximum Green (s)	24.5	24.5		24.5	24.5		21.2	21.2		21.2	21.2	
Yellow Time (s)	5.5	5.5		5.5	5.5		4.8	4.8		4.8	4.8	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.5	7.5		7.5	7.5		6.8	6.8		6.8	6.8	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None										
Act Effct Green (s)	20.8	20.8		20.8	20.8		15.3	15.3		14.7	14.7	
Actuated g/C Ratio	0.50	0.50		0.50	0.50		0.36	0.36		0.35	0.35	
v/c Ratio	0.02	0.71		0.06	0.10		0.55	0.16		0.01	0.29	
Control Delay	10.4	8.8		11.5	10.1		20.0	12.7		12.5	13.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	10.4	8.8		11.5	10.1		20.0	12.7		12.5	13.9	
LOS	B	A		B	B		C	B		B	B	
Approach Delay		8.8			10.3			17.7			13.9	
Approach LOS		A			B			B			B	
Queue Length 50th (ft)	2	36		2	14		49	18		1	34	
Queue Length 95th (ft)	11	\#205		13	42		134	55		6	89	
Internal Link Dist (ft)		897			1002			1518			1400	
Turn Bay Length (ft)												
Base Capacity (vph)	805	1213		285	1143		669	1041		719	1043	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.02	0.63		0.05	0.08		0.36	0.11		0.01	0.18	

Intersection Summary

```
Area Type: Other
```

Cycle Length: 60
Actuated Cycle Length: 42
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.71
Intersection Signal Delay: 11.8
Intersection LOS: B
Intersection Capacity Utilization 82.2\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3:

Burgess\&Niple, Inc.
Page 2

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\dagger										
Traffic Volume (vph)	17	70	281	10	96	9	764	245	17	7	100	16
Future Volume (vph)	17	70	281	10	96	9	764	245	17	7	100	16
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.880			0.987			0.990			0.979	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1639	0	1770	1839	0	1770	1844	0	1770	1824	0
Flt Permitted	0.682			0.280			0.443			0.582		
Satd. Flow (perm)	1270	1639	0	522	1839	0	825	1844	0	1084	1824	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		201			5			8			8	
Link Speed (mph)		55			55			45			45	
Link Distance (ft)		977			1082			1598			1480	
Travel Time (s)		12.1			13.4			24.2			22.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%	102\%
Adj. Flow (vph)	19	78	312	11	106	10	847	272	19	8	111	18
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	19	390	0	11	116	0	847	291	0	8	129	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru										
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		5	2		6	6	
Switch Phase												

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	4.0	4.0		4.0	4.0		5.0	4.0		4.0	4.0	
Minimum Split (s)	23.5	23.5		23.5	23.5		9.5	22.8		22.8	22.8	
Total Split (s)	26.0	26.0		26.0	26.0		40.0	64.0		24.0	24.0	
Total Split (\%)	28.9\%	28.9\%		28.9\%	28.9\%		44.4\%	71.1\%		26.7\%	26.7\%	
Maximum Green (s)	18.5	18.5		18.5	18.5		35.5	57.2		17.2	17.2	
Yellow Time (s)	5.5	5.5		5.5	5.5		3.5	4.8		4.8	4.8	
All-Red Time (s)	2.0	2.0		2.0	2.0		1.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.5	7.5		7.5	7.5		4.5	6.8		6.8	6.8	
Lead/Lag							Lead			Lag	Lag	
Lead-Lag Optimize?							Yes			Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None										
Act Effct Green (s)	14.3	14.3		14.3	14.3		48.4	45.9		10.7	10.7	
Actuated g/C Ratio	0.19	0.19		0.19	0.19		0.64	0.61		0.14	0.14	
v/c Ratio	0.08	0.82		0.11	0.33		0.88	0.26		0.05	0.49	
Control Delay	28.4	31.1		30.8	30.5		23.7	7.4		31.7	37.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	28.4	31.1		30.8	30.5		23.7	7.4		31.7	37.8	
LOS	C	C		C	C		C	A		C	D	
Approach Delay		31.0			30.5			19.5			37.5	
Approach LOS		C			C			B			D	
Queue Length 50th (ft)	8	91		5	48		262	58		4	59	
Queue Length 95th (ft)	27	\#238		20	100		\#553	100		16	113	
Internal Link Dist (ft)		897			1002			1518			1400	
Turn Bay Length (ft)												
Base Capacity (vph)	329	574		135	481		1030	1395		261	446	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.06	0.68		0.08	0.24		0.82	0.21		0.03	0.29	

Intersection Summary

```
Area Type: Other
```

Cycle Length: 90
Actuated Cycle Length: 75.4
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.88
Intersection Signal Delay: 24.2
Intersection LOS: C
Intersection Capacity Utilization 83.2\%
ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3 :

Burgess\&Niple, Inc.

MOVEMENT SUMMARY

∇ Site: [AM - Opening (Site Folder: Opening)]

Culbreath Rd at Ayers Rd/Hayman Rd
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: Culbreath Rd													
3 L2	170	3.0	185	3.0	0.218	4.8	LOS A	1.1	28.1	0.23	0.10	0.23	34.6
8 T1	74	3.0	80	3.0	0.218	4.8	LOS A	1.1	28.1	0.23	0.10	0.23	34.6
18 R2	6	3.0	7	3.0	0.218	4.8	LOS A	1.1	28.1	0.23	0.10	0.23	33.6
Approach	250	3.0	272	3.0	0.218	4.8	LOS A	1.1	28.1	0.23	0.10	0.23	34.6
East: Hayman Rd													
1 L 2	10	3.0	11	3.0	0.083	4.3	LOS A	0.3	8.9	0.41	0.28	0.41	38.6
6 T1	61	3.0	66	3.0	0.083	4.3	LOS A	0.3	8.9	0.41	0.28	0.41	38.5
16 R2	6	3.0	7	3.0	0.083	4.3	LOS A	0.3	8.9	0.41	0.28	0.41	37.3
Approach	77	3.0	84	3.0	0.083	4.3	LOS A	0.3	8.9	0.41	0.28	0.41	38.4
North: Culbreath Rd													
7 L2	3	3.0	3	3.0	0.150	4.9	LOS A	0.7	16.8	0.42	0.30	0.42	36.6
4 T1	129	3.0	140	3.0	0.150	4.9	LOS A	0.7	16.8	0.42	0.30	0.42	36.6
14 R2	8	3.0	9	3.0	0.150	4.9	LOS A	0.7	16.8	0.42	0.30	0.42	35.4
Approach	140	3.0	152	3.0	0.150	4.9	LOS A	0.7	16.8	0.42	0.30	0.42	36.5
West: Ayers Rd													
5 L2	9	3.0	10	3.0	0.534	9.4	LOS A	3.8	97.4	0.51	0.34	0.51	35.8
2 T1	53	3.0	58	3.0	0.534	9.4	LOS A	3.8	97.4	0.51	0.34	0.51	35.8
12 R 2	498	3.0	541	3.0	0.534	9.4	LOS A	3.8	97.4	0.51	0.34	0.51	34.7
Approach	560	3.0	609	3.0	0.534	9.4	LOS A	3.8	97.4	0.51	0.34	0.51	34.8
All Vehicles	1027	3.0	1116	3.0	0.534	7.3	LOS A	3.8	97.4	0.42	0.27	0.42	35.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

\nexists Site: [PM - Opening (Site Folder: Opening)]

Culbreath Rd at Ayers Rd/Hayman Rd
Site Category: (None)
Roundabout

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

\square Site: [AM - Future (Site Folder: Future)]

Culbreath Rd at Ayers Rd/Hayman Rd
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: Culbreath Rd													
3 L2	215	3.0	234	3.0	0.281	5.5	LOS A	1.5	38.5	0.28	0.14	0.28	34.3
8 T1	93	3.0	101	3.0	0.281	5.5	LOS A	1.5	38.5	0.28	0.14	0.28	34.2
18 R2	7	3.0	8	3.0	0.281	5.5	LOS A	1.5	38.5	0.28	0.14	0.28	33.2
Approach	315	3.0	342	3.0	0.281	5.5	LOS A	1.5	38.5	0.28	0.14	0.28	34.2
East: Hayman Rd													
1 L 2	13	3.0	14	3.0	0.113	4.9	LOS A	0.5	12.1	0.47	0.36	0.47	38.2
$6 \quad$ T1	77	3.0	84	3.0	0.113	4.9	LOS A	0.5	12.1	0.47	0.36	0.47	38.1
16 R 2	7	3.0	8	3.0	0.113	4.9	LOS A	0.5	12.1	0.47	0.36	0.47	36.9
Approach	97	3.0	105	3.0	0.113	4.9	LOS A	0.5	12.1	0.47	0.36	0.47	38.0
North: Culbreath Rd													
7 L2	4	3.0	4	3.0	0.202	5.8	LOS A	0.9	23.3	0.49	0.39	0.49	36.1
4 T1	162	3.0	176	3.0	0.202	5.8	LOS A	0.9	23.3	0.49	0.39	0.49	36.0
14 R2	10	3.0	11	3.0	0.202	5.8	LOS A	0.9	23.3	0.49	0.39	0.49	35.0
Approach	176	3.0	191	3.0	0.202	5.8	LOS A	0.9	23.3	0.49	0.39	0.49	36.0
West: Ayers Rd													
5 L2	12	3.0	13	3.0	0.704	14.2	LOS B	10.7	274.3	0.72	0.65	1.00	33.2
2 T1	67	3.0	73	3.0	0.704	14.2	LOS B	10.7	274.3	0.72	0.65	1.00	33.2
12 R 2	628	3.0	683	3.0	0.704	14.2	LOS B	10.7	274.3	0.72	0.65	1.00	32.2
Approach	707	3.0	768	3.0	0.704	14.2	LOS B	10.7	274.3	0.72	0.65	1.00	32.3
All Vehicles	1295	3.0	1408	3.0	0.704	10.3	LOS B	10.7	274.3	0.56	0.47	0.71	33.7

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

\square Site: [PM - Future (Site Folder: Future)]
Culbreath Rd at Ayers Rd/Hayman Rd
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ND } \\ & \text { VS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% B [Veh. veh	$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \mathrm{ft} \end{aligned}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: Culbreath Rd													
3 L2	764	3.0	830	3.0	0.927	30.1	LOS D	37.9	970.2	1.00	0.79	1.40	25.0
8 T1	245	3.0	266	3.0	0.927	30.1	LOS D	37.9	970.2	1.00	0.79	1.40	25.0
18 R2	17	3.0	18	3.0	0.927	30.1	LOS D	37.9	970.2	1.00	0.79	1.40	24.5
Approach	1026	3.0	1115	3.0	0.927	30.1	LOS D	37.9	970.2	1.00	0.79	1.40	25.0
East: Hayman Rd													
1 L2	10	3.0	11	3.0	0.301	13.9	LOS B	1.2	30.4	0.76	0.78	0.87	33.3
6 T1	96	3.0	104	3.0	0.301	13.9	LOS B	1.2	30.4	0.76	0.78	0.87	33.3
16 R 2	9	3.0	10	3.0	0.301	13.9	LOS B	1.2	30.4	0.76	0.78	0.87	32.3
Approach	115	3.0	125	3.0	0.301	13.9	LOS B	1.2	30.4	0.76	0.78	0.87	33.2
North: Culbreath Rd													
7 L2	7	3.0	8	3.0	0.269	11.3	LOS B	1.0	26.8	0.71	0.71	0.71	33.1
4 T1	100	3.0	109	3.0	0.269	11.3	LOS B	1.0	26.8	0.71	0.71	0.71	33.1
14 R2	16	3.0	17	3.0	0.269	11.3	LOS B	1.0	26.8	0.71	0.71	0.71	32.1
Approach	123	3.0	134	3.0	0.269	11.3	LOS B	1.0	26.8	0.71	0.71	0.71	32.9
West: Ayers Rd													
5 L2	17	3.0	18	3.0	0.341	6.4	LOS A	1.9	49.2	0.36	0.21	0.36	37.6
2 T1	70	3.0	76	3.0	0.341	6.4	LOS A	1.9	49.2	0.36	0.21	0.36	37.5
12 R 2	281	3.0	305	3.0	0.341	6.4	LOS A	1.9	49.2	0.36	0.21	0.36	36.3
Approach	368	3.0	400	3.0	0.341	6.4	LOS A	1.9	49.2	0.36	0.21	0.36	36.6
All Vehicles	1632	3.0	1774	3.0	0.927	22.2	LOS C	37.9	970.2	0.82	0.65	1.08	27.9

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 6.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

APPENDIX D

Benefit Cost Analysis

BCA Result Summary									
Factors		Alternative 1: Traffic Signal				Alternative 2: Roundabout			
			Undiscounted		Discounted to 2022\$		Undiscounted		d to 2022\$
Benefits									
Delay Benefits		\$	949,161	\$	658,477	\$	1,134,344	\$	798,736
Safety Benefits		\$	7,500,984	\$	4,466,244	\$	10,569,568	\$	6,293,344
	Total Benefits	\$	8,450,144	\$	5,124,721	\$	11,703,912	\$	7,092,081
Costs									
Construction		\$	2,114,467	\$	1,954,943	\$	2,057,769	\$	1,902,523
	Total Cost	\$	2,114,467	\$	1,954,943	\$	2,057,769	\$	1,902,523
Comparing Benefits to Costs									
Net Present Value		\$	6,335,678	\$	3,169,778	\$	9,646,143	\$	5,189,557
Benefit-Cost Ratio			4.00		2.62		5.69		3.73

Assumptions				
Items		Value	Unit	Source
Travel Time Savings				
Total Number of Workdays per year		260	day	5 days per week
Average Vehicle Occupancy				
Passenger Car		1.48	per vehicle	USDOT Grant BCA Guidance
Truck		1	per vehicle	
Hourly Values of Travel Time Savings				
All Purposes		18.8	\$ per person-hour	USDOT Grant BCA Guidance
Truck Drivers		32.4	\$ per person-hour	
Safety Benefits				
No Injury	\$	7,700	\$ per crash	
Possible Injury	\$	103,950	\$ per crash	
Non-incapacitating Injury	\$	180,180	\$ per crash	(obtained by $6 / 12 / 23$)
Incapacitating Injury	\$	888,030	\$ per crash	
Killed	\$	10,890,000	\$ per crash	
Inflation Rate				
Discount Rate		4\%	per year	FDM Section 122.6 (obtained by 6/12/23)

Delay Reduction Benefits																
Year	Approach	Delay						Count Data								
		AM			PM			HV\%	Total		AM			PM		
		NB	TS	RA	NB	Ts	RA		AM	PM	1	T	R	1	T	R
2025	EB	27.7	8.8	${ }^{9.4}$	51	19.3	5.4	2.60\%	560	292	9	53	498	14	55	223
	WB	27.5	10.3	4.3	51	27.9	9.3	3.60\%	77	91	10	61	6	8	76	7
	NB	5.4	17.7	4.8	7	12	13.6	2.70\%	250	814	170	74	6	606	194	14
	SB	0.2	13.9	4.9	0.5	31.8	8	2.70\%	140	98	3	129	8	6	79	13
2035	EB	112	8.8	14.2	51	31	6.4	2.60\%	707	368	12	67	628	17	70	281
	WB	156.2	10.3	4.9	51	30.5	13.9	3.60\%	97	115	13	77	7	10	96	9
	NB	5.6	17.7	5.5	8.1	19.5	30.1	2.70\%	315	1026	215	93	7	764	245	17
	SB	0.2	13.9	5.8	0.4	37.5	11.3	2.70\%	176	123	4	162	10	7	100	16

Alternative 1: Traffic Signal																				
Year	Approach	Benfit Per Hour								Travel Time Saving										
		AM				PM				AM				PM				Daily Saving		Annual Saving
		PV		HV																
2025	EB	\$	15,176	\$	472	\$	7,913	\$	246	\$	79.7	\$	2.5	\$	69.7	\$	2.2	154.0		$\$ \quad 22,482$
	wB	\$	2,065	\$	90	\$	2,441	\$	106	\$	9.9	\$	0.4	\$	15.7	\$	0.7	S	26.6	
	NB	\$	6,768	\$	219	\$	22,037	\$	712	\$	(23.1)	\$	(0.7)	\$	(30.6)	\$	(1.0)	\$	(55.5)	
	SB	\$	3,790	\$	122	\$	2,653	\$	86	\$	(14.4)	\$	(0.5)	\$	(23.1)	\$	(0.7)	\$	(38.7)	
2035	EB	s	19,160	\$	596	\$	9,973	\$	310	\$	549.3	\$	17.1	\$	55.4	\$	1.7	S	623.5	
	wB	\$	2,602	\$	113	\$	3,085	\$	134	\$	105.4	\$	4.6	\$	17.6	\$	0.8	\$	128.4	,93
	NB	\$	8,528	\$	276	,	27,777	\$	898	\$	(28.7)	\$	(0.9)	\$	(88.0)	\$	(2.8)	\$	(120.4)	
	SB	\$	4,765	\$	154	\$	3,330	\$	108	s	(18.1)	\$	(0.6)	\$	(34.3)	\$	(1.1)		(54.1)	

Alternative 2: Roundabout																				
Year	Approach	Benfit Per Hour								AM				Travel Time Saving						
		AM				PM								PV ${ }^{\text {P }}$		PM		Daily Saving		Annual Saving
		PV		HV		PV		HV		PV		HV					-			
2025	EB	\$$\$$$\$$$\$$	15,176	\$	472	\$	7,913	\$	246	\$	77.1	\$	2.4	\$	100.2	\$	3.1	\$	182.9	
	WB		2,065	\$	90	\$	2,441	\$	106	\$	13.3	\$	0.6	\$	28.3	\$	1.2	\$	43.4	45,482
	NB		6,768	\$	219	\$	22,037	\$	712	\$	1.1	\$	0.0	\$	(40.4)	\$	(1.3)	\$	(40.5)	45,482
	SB		3,790	\$	122	\$	2,653	\$	86	\$	(4.9)	\$	(0.2)	\$	(5.5)	\$	(0.2)	\$	(10.8)	
2035	EB	5$\$$$\$$$\$$	19,160	\$	596	\$	9,973	\$	310	\$	520.5	\$	16.2	\$	123.6	\$	3.8	\$	664.1	
	WB		2,602	\$	113	\$	3,085	\$	134	\$	109.3	\$	4.8	\$	31.8	\$	1.4	\$	147.3	\$ 160,762
	NB		8,528	\$	276	\$	27,777	\$	898	\$	0.2	\$	0.0	\$	(169.7)	s	(5.5)	\$	(175.0)	\$ 100,762
	SB		4,765	\$	154	\$	3,330	\$	108	\$	(7.4)	\$	(0.2)	\$	(10.1)	\$	(0.3)		(18.1)	

Year	Alternative 1				Alternative 2			
	Delay ReductionBenefits		Discounted to 2022\$		Delay ReductionBenefits		Discounted to 20225	
2025	S	22,482	\$	19,98		82	\$	40,43
2026	s	35,243	\$	30,126		57,010		8,732
2027		8,004	\$	39,456		8,538		56,333
2028	s	60,765	\$	48,024		80,06		63,277
9	\$	73,526	\$	55,874		91,594		69,604
2030		86,287	\$	63,049		103,12		75,35
2031		048	\$	69,59		114,650		80,552
2032		111,810	\$	75,534		126,178		85,242
33		124,571	\$	80,919		137,706		89,451
2034		137,332		85,777		149,234		93,211
2035	\$	150,093	\$	90,142	5	160,762		96,55
Total		949,161	\$	658		1,134,344		798,7

[^2]| Safety Benefits | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Fatal | Incapacitating
 Injury | Non-
 incapacitating
 Injury | Possible Injury | PDO | Total | |
| 2016 | 0 | 1 | 0 | 0 | 1 | 2 | |
| 2017 | 0 | 1 | 2 | 1 | 5 | 2 | |
| 2018 | 0 | 2 | 3 | 0 | 6 | 11 | |
| Grand Total | 0 | 4 | 5 | 1 | 12 | 22 | |

Year	Alternative 1				Alternative 2			
	Safety Benefits		$\begin{gathered} \text { Discounted to } \\ 2022 \$ \\ \hline \end{gathered}$		Safety Benefits		$\begin{gathered} \hline \text { Discounted to } \\ 2022 \$ \end{gathered}$	
2025	\$	681,908	\$	556,640	\$	960,870	\$	784,356
2026	\$	681,908	\$	520,224	\$	960,870	\$	733,043
2027		681,908	\$	486,191	\$	960,870	\$	685,087
2028		681,908	\$	454,384	\$	960,870	\$	640,268
2029	\$	681,908	\$	424,658	\$	960,870	\$	598,381
2030		681,908	\$	396,876	\$	960,870	\$	559,235
2031	\$	681,908	\$	370,913	\$	960,870	\$	522,650
2032	\$	681,908	\$	346,647	\$	960,870	\$	488,457
2033	\$	681,908	\$	323,969	\$	960,870	\$	456,502
2034	\$	681,908	\$	302,775	\$	960,870	\$	426,638
2035		681,908	\$	282,967	\$	960,870	\$	398,727
		7,500,984	\$	4,466,244	\$	10,569,568	\$	6,293,344

	Data Input
	Description
Intermediate Calculation Results	
Subtotal Calculation Results	

ENGINEER'S ESTIMATE

HERNANDO COUNTY

FINANCIAL PROJECT ID \# :

COMPONENT GROUPS

100 - STRUCTURES NOT USED	
200-ROADWAY	\$1,132,450.17
300 - SIGNING \& PAVEMENT MARKINGS	\$25,950.80
400 - LIGHTING NOT USED	
500 - SIGNALIZATION	\$333,490.25
550 - ITS NOT USED	
600 - LANDSCAPE / PERIPHERALS NOT USED	
700 - UTILITIES NOT USED	
800 - ARCHITECTURAL NOT USED	
900 - MASS TRANSIT NOT USED	
1000 - INVALID \& OTHER ITEMS NOT USED	
COMPONENT SUB-TOTAL	\$1,491,891.22
(102-1) MOT (Maintenance of Traffic) 10%	\$149,189.12
SUB-TOTAL	\$1,641,080.34
(101-1) MOB (Mobilization) 10\%	\$164,108.03
SUB-TOTAL	\$1,805,188.37
PU (Project Unknowns) 15\%	\$270,778.26
SUB-TOTAL	\$2,075,966.63
(999-25) Initial Contingency (Do Not Bid)	\$38,500.00
PROJECT GRAND TOTAL	\$2,114,466.63

NOTES:
\qquad
\qquad

ENGINEER'S ESTIMATE

HILLSBOROUGH COUNTY

FINANCIAL PROJECT ID:
FILE VERSION PAGE NUMBER

200-Roadway

PAY ITEM \#	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL COST
01011	MOBILIZATION		10\%	See Summary Sheet	
01021	MAINTENANCE OF TRAFFIC		10\%	See Summary Sheet	
011011	CLEARING \& GRUBBING	AC	5.0	\$54,807.65	\$274,038.25
0110410	REMOVAL OF EXISTING CONCRETE	SY	1400	\$35.11	\$49,154.00
01604	TYPE B STABILIZATION	SY	10262	\$8.43	\$86,508.66
0285709	OPTIONAL BASE, BASE GROUP 09	SY	3840	\$22.78	\$87,475.20
0327706	MILLING EXIST ASPH PAVT, 1 1/2" AVG DEPTH	SY	9111	\$3.68	\$33,528.48
0334153	SUPERPAVE ASPHALTIC CONCRETE, TRAFFIC C, PG76-22	TN	634	\$155.36	\$98,498.24
0337783	ASPHALT CONCRETE FRICTION COURSE,TRAFFIC C, FC-12.5, PG 76-22	TN	1069	\$152.04	\$162,530.76
0430175136	PIPE CULVERT, OPT MATERIAL, ROUND, 36"S/CD	LF	300	\$252.82	\$75,846.00
0430982138	MITERED END SECTION, OPTIONAL ROUND, 36" CD	EA	6	\$8,015.00	\$48,090.00
052411	CONCRETE DITCH PAVT, NON REINFORCED, 3'	SY	1400	\$74.27	\$103,978.00
057012	PERFORMANCE TURF, SOD	SY	22293	\$5.06	\$112,802.58
200-Roadway		COMPONENT TOTAL			\$1,132,450.17

ENGINEER'S ESTIMATE

HILLSBOROGH COUNTY

300-Signing \& Pavement Markings

FINANCIAL PROJECT ID:	
FILE VERSION:	EE_01-27_Rev30
PAGE NUMBER:	3 of 3

PAY ITEM \#	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL COST
0700111	SINGLE POST SIGN, F\&I GROUND MOUNT, UP TO 12 SF	AS		\$457.35	\$457.35
0700160	SINGLE POST SIGN, REMOVE	AS	14	\$45.37	\$635.18
071111125	THERMOPLASTIC, STANDARD, WHITE, SOLID, 24" FOR STOP LINE AND CROSSWALK	LF	96	\$4.07	\$390.72
071115101	THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 " ${ }^{\text {² }}$	GM	1.66	\$6,113.26	\$10,148.01
071111170	THERMOPLASTIC, STANDARD, WHITE, ARROW	EA	19	\$69.13	\$1,313.47
071115201	THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, YELLOW, SOLID, 6"	GM	1.86	\$6,113.26	\$11,370.66
071111224	THERMOPLASTIC, STANDARD, YELLOW, SOLID, 18" FOR DIAGONAL OR CHEVRON	LF	340	\$4.81	\$1,635.40
300-Signing	\& Pavement Markings		COMPONENT	TOTAL	\$25,950.80

ENGINEER'S ESTIMATE FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT 7

FINANCIAL PROJECT ID: FILE VERSION: PAGE NUMBER

500-Signalization

PAY ITEM \#	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL COST
0630211	CONDUIT, FURNISH \& INSTALL, OPEN TRENCH	LF	85	\$17.05	\$1,449.25
0630212	CONDUIT, FURNISH \& INSTALL, DIRECTIONAL BORE	LF	511	\$35.35	\$18,063.85
063271	SIGNAL CABLE- NEW OR RECONSTRUCTED INTERSECTION, FURNISH \& INSTALL	PI	1	\$9,675.05	\$9,675.05
06331121	FIBER OPTIC CABLE, F\&I, UNDERGROUND, 2-12 FIBERS	LF	220	\$3.93	\$864.60
0633231	FIBER OPTIC CONNECTION, INSTALL, SPLICE	EA	12	\$54.05	\$648.60
0633232	FIBER OPTIC CONNECTION, INSTALL, TERMINATION	EA	12	\$103.45	\$1,241.40
0633311	FIBER OPTIC CONNECTION HARDWARE, F\&I, SPLICE ENCLOSURE	EA	1	\$1,251.40	\$1,251.40
0633312	FIBER OPTIC CONNECTION HARDWARE, F\&I, SPLICE TRAY	EA	1	\$153.97	\$153.97
0633314	FIBER OPTIC CONNECTION HARDWARE, F\&I, BUFFER TUBE FAN OUT KIT	EA	1	\$93.78	\$93.78
0633315	FIBER OPTIC CONNECTION HARDWARE, F\&I, PRETERMINATED PATCH PANEL	EA	1	\$1,580.44	\$1,580.44
0635211	PULL \& SPLICE BOX, F\&I, 13 " $\times 24$ " COVER SIZE	EA	16	\$1,397.09	\$22,353.44
0635213	PULL \& SPLICE BOX, F\&I, 30" $\times 60$ " RECTANGULAR OR 36" ROUND COVER SIZE	EA	1	\$5,831.30	\$5,831.30
06391122	ELECTRICAL POWER SERVICE, F\&I, UNDERGROUND, METER PURCHASED BY CON	AS	1	\$4,585.66	\$4,585.66
063921	ELECTRICAL SERVICE WIRE, FURNISH \& INSTALL	LF	20	\$18.79	\$375.80
0641212	PRESTRESSED CONCRETE POLE, F\&I, TYPE P-II SERVICE POLE	EA	1	\$1,849.04	\$1,849.04
0641218	PRESTRESSED CONCRETE POLE, F\&I, TYPE P-VIII	EA	4	\$19,733.64	\$78,934.56
0646111	ALUMINUM SIGNALS POLE, PEDESTAL	EA	8	\$2,410.94	\$19,287.52
0650114	VEHICULAR TRAFFIC SIGNAL, FURNISH \& INSTALL ALUMINUM, 3 SECTION, 1 WAY	AS	4	\$1,755.30	\$7,021.20
0650116	VEHICULAR TRAFFIC SIGNAL, FURNISH \& INSTALL ALUMINUM, 4 SECTION, 1 WAY	AS	4	\$1,698.21	\$6,792.84
0653111	SIGNAL PEDESTRIAN, 12 INCH, INCANDESCENT, 1 WAY	AS	8	\$810.03	\$6,480.24
0660411	VEHICLE DETECTION SYSTEM- VIDEO, FURNISH \& INSTALL CABINET EQUIPMENT	EA	1	\$20,547.77	\$20,547.77
0660412	VEHICLE DETECTION SYSTEM- VIDEO, FURNISH \& INSTALL ABOVE GROUND EQUIF	EA	4	\$6,892.29	\$27,569.16
06631111	SIGNAL PRIORITY AND PREEMPTION SYSTEM, F\&I, OPTICAL, CABINET ELECTRON	EA	1	\$7,166.97	\$7,166.97
06631112	SIGNAL PRIORITY AND PREEMPTION SYSTEM, F\&I, OPTICAL, DETECTOR	EA	2	\$3,550.78	\$7,101.56
0665111	PEDESTRIAN DETECTOR, FURNISH \& INSTALL, STANDARD	EA	8	\$309.36	\$2,474.88
06705111	TRAFFIC CONTROLLER ASSEMBLY, F\&I, NEMA, 1 PREEMPTION	AS	1	\$42,473.60	\$42,473.60
068411	MANAGED FIELD ETHERNET SWITCH, FURNISH \& INSTALL	EA	1	\$5,041.64	\$5,041.64
0685114	UNINTERRUPTIBLE POWER SUPPLY, FURNISH AND INSTALL, ONLINE/DOUBLE CON	EA	1	\$13,331.93	\$13,331.93
0700522	INTERNALLY ILLUMINATED SIGN, FURNISH \& INSTALL, OVERHEAD MOUNT, 12-18 S	EA	4	\$4,812.20	\$19,248.80
500-Signalization		COMPONENT TOTAL			\$333,490.25

ENGINEER'S ESTIMATE

HERNANDO COUNTY

FINANCIAL PROJECT ID \# :

COMPONENT GROUPS

100 - STRUCTURES NOT USED	
200 - ROADWAY	\$1,262,766.01
300 - SIGNING \& PAVEMENT MARKINGS	\$12,025.19
400 - LIGHTING NOT USED	
500 - SIGNALIZATION NOT USED	
550 - ITS NOT USED	
600 - LANDSCAPE / PERIPHERALS NOT USED	
700 - UTILITIES NOT USED	
800 - ARCHITECTURAL NOT USED	
900 - MASS TRANSIT NOT USED	
1000 - INVALID \& OTHER ITEMS NOT USED	
COMPONENT SUB-TOTAL	\$1,274,791.20
(102-1) MOT (Maintenance of Traffic) 20%	\$254,958.24
SUB-TOTAL	\$1,529,749.43
(101-1) MOB (Mobilization) 10\%	\$152,974.94
SUB-TOTAL	\$1,682,724.38
PU (Project Unknowns) 20\%	\$336,544.88
SUB-TOTAL	\$2,019,269.25
(999-25) Initial Contingency (Do Not Bid)	\$38,500.00
PROJECT GRAND TOTAL	\$2,057,769.25

NOTES:
\qquad
\qquad

ENGINEER'S ESTIMATE

HILLSBOROUGH COUNTY

FINANCIAL PROJECT ID:
FILE VERSION PAGE NUMBER

EE_01-27 Rev30 2 of 3

200-Roadway

PAY ITEM \#	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL COST
01011	MOBILIZATION		10\%	See Summary Sheet	
01021	MAINTENANCE OF TRAFFIC		20\%	See Summary Sheet	
011011	CLEARING \& GRUBBING	AC	3.7	\$54,807.65	\$202,788.31
0110410	REMOVAL OF EXISTING CONCRETE	SY	1245	\$35.11	\$43,711.95
01604	TYPE B STABILIZATION	SY	8744	\$8.43	\$73,711.92
0285709	OPTIONAL BASE, BASE GROUP 09	SY	5762	\$22.78	\$131,258.36
0334153	SUPERPAVE ASPHALTIC CONCRETE, TRAFFIC C, PG76-22	TN	951	\$155.36	\$147,747.36
0337783	ASPHALT CONCRETE FRICTION COURSE,TRAFFIC C, FC-12.5, PG 76-22	TN	476	\$152.04	\$72,371.04
03503013	CONCRETE PAVEMENT FOR ROUNDABOUT APRON, 12" DEPTH	SY	313	\$136.35	\$42,677.55
04251461	INLETS, CURB, TYPE J-6, <10'	EA	4	\$10,699.32	\$42,797.28
04251541	INLETS, DT BOT, TYPE D, <10'	EA	4	\$7,429.41	\$29,717.64
0430175118	PIPE CULVERT,OPTIONAL MATERIAL,ROUND, 18"S/CD	LF	350	\$134.39	\$47,036.50
0430175136	PIPE CULVERT, OPT MATERIAL, ROUND, 36"S/CD	LF	570	\$252.82	\$144,107.40
0430982138	MITERED END SECTION, OPTIONAL ROUND, 36" CD	EA	6	\$8,015.00	\$48,090.00
052017	CONCRETE CURB \& GUTTER, TYPE E	LF	1716	\$34.59	\$59,356.44
0520110	CONCRETE CURB \& GUTTER, TYPE F	LF	772	\$60.65	\$46,821.80
052024	CONCRETE CURB, TYPE D	LF	250	\$50.66	\$12,665.00
052028	CONCRETE CURB, TYPE RA	LF	327	\$56.46	\$18,462.42
052411	CONCRETE DITCH PAVT, NON REINFORCED, 3'	SY	670	\$74.27	\$49,760.90
057012	PERFORMANCE TURF, SOD	SY	9819	\$5.06	\$49,684.14
200-Roadw		COMPONENT TOTAL			\$1,262,766.01

ENGINEER'S ESTIMATE

HILLSBOROGH COUNTY

300-Signing \& Pavement Markings

FINANCIAL PROJECT ID:	
FILE VERSION:	
PAGE NUMBER:	EE_01-27_Rev30
3	

PAY ITEM \#	ITEM DESCRIPTION	UNIT	QUANTITY	UNIT COST	TOTAL COST
0700111	SINGLE POST SIGN, F\&I GROUND MOUNT, UP TO 12 SF	AS		\$457.35	\$457.35
0700160	SINGLE POST SIGN, REMOVE	AS	14	\$45.37	\$635.18
071111123	THERMOPLASTIC, STANDARD, WHITE, SOLID, 12" FOR CROSSWALK AND ROUNDABOUT	LF	65	\$4.07	\$264.55
071115101	THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES WHITE, SOLID, 6 " ${ }^{\prime \prime}$	GM	0.63	\$6,113.26	\$3,851.35
071111160	THERMOPLASTIC, STANDARD, WHITE, MESSAGE OR SYMBOL	EA	4	\$247.09	\$988.36
071115201	THERMOPLASTIC, STANDARD-OPEN GRADED ASPHALT SURFACES, YELLOW, SOLID, 6"	GM	0.87	\$6,113.26	\$5,318.54
071111224	THERMOPLASTIC, STANDARD, YELLOW, SOLID, 18" FOR DIAGONAL OR CHEVRON	LF	106	\$4.81	\$509.86
300-Signing	\& Pavement Markings		COMPONENT	TOTAL	\$12,025.19

[^0]: Note: NA* stop control delay and LOS is not available due to the volumes exceed modeled capacity in Synchro.

[^1]: * Note: 93 pph applies as the lower threshold volume

[^2]: Data Input
 Description
 Intermediate Calculation Results
 Subtotal Calculation Results

